Inequalities for the Grundy chromatic number of graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Grundy chromatic number of the complement of bipartite graphs

A Grundy k-coloring of a graph G, is a vertex k-coloring of G such that for each two colors i and j with i < j, every vertex of G colored by j has a neighbor with color i. The Grundy chromatic number Γ(G), is the largest integer k for which there exists a Grundy k-coloring for G. In this note we first give an interpretation of Γ(G) in terms of the total graph of G, when G is the complement of a...

متن کامل

Results on the Grundy chromatic number of graphs

Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i < j , every vertex ofG colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by (G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining (G) k, for any fixed in...

متن کامل

Grundy number of graphs

The Grundy number of a graph G is the maximum number k of colors used to color the vertices of G such that the coloring is proper and every vertex x colored with color i, 1 ≤ i ≤ k, is adjacent to (i− 1) vertices colored with each color j, 1 ≤ j ≤ i− 1. In this paper we give bounds for the Grundy number of some graphs and cartesian products of graphs. In particular, we determine an exact value ...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2007

ISSN: 0166-218X

DOI: 10.1016/j.dam.2007.07.002